Client Libraries
Arch provides a unified interface that works seamlessly with multiple client libraries and tools. You can use your preferred client library without changing your existing code - just point it to Arch’s gateway endpoints.
Supported Clients
OpenAI SDK - Full compatibility with OpenAI’s official client
Anthropic SDK - Native support for Anthropic’s client library
cURL - Direct HTTP requests for any programming language
Custom HTTP Clients - Any HTTP client that supports REST APIs
Gateway Endpoints
Arch exposes two main endpoints:
Endpoint  | 
Purpose  | 
|---|---|
  | 
OpenAI-compatible chat completions (LLM Gateway)  | 
  | 
Anthropic-compatible messages (LLM Gateway)  | 
OpenAI (Python) SDK
The OpenAI SDK works with any provider through Arch’s OpenAI-compatible endpoint.
Installation:
pip install openai
Basic Usage:
from openai import OpenAI
# Point to Arch's LLM Gateway
client = OpenAI(
    api_key="test-key",  # Can be any value for local testing
    base_url="http://127.0.0.1:12000/v1"
)
# Use any model configured in your arch_config.yaml
completion = client.chat.completions.create(
    model="gpt-4o-mini",  # Or use :ref:`model aliases <model_aliases>` like "fast-model"
    max_tokens=50,
    messages=[
        {
            "role": "user",
            "content": "Hello, how are you?"
        }
    ]
)
print(completion.choices[0].message.content)
Streaming Responses:
from openai import OpenAI
client = OpenAI(
    api_key="test-key",
    base_url="http://127.0.0.1:12000/v1"
)
stream = client.chat.completions.create(
    model="gpt-4o-mini",
    max_tokens=50,
    messages=[
        {
            "role": "user",
            "content": "Tell me a short story"
        }
    ],
    stream=True
)
# Collect streaming chunks
for chunk in stream:
    if chunk.choices[0].delta.content:
        print(chunk.choices[0].delta.content, end="")
Using with Non-OpenAI Models:
The OpenAI SDK can be used with any provider configured in Arch:
# Using Claude model through OpenAI SDK
completion = client.chat.completions.create(
    model="claude-3-5-sonnet-20241022",
    max_tokens=50,
    messages=[
        {
            "role": "user",
            "content": "Explain quantum computing briefly"
        }
    ]
)
# Using Ollama model through OpenAI SDK
completion = client.chat.completions.create(
    model="llama3.1",
    max_tokens=50,
    messages=[
        {
            "role": "user",
            "content": "What's the capital of France?"
        }
    ]
)
Anthropic (Python) SDK
The Anthropic SDK works with any provider through Arch’s Anthropic-compatible endpoint.
Installation:
pip install anthropic
Basic Usage:
import anthropic
# Point to Arch's LLM Gateway
client = anthropic.Anthropic(
    api_key="test-key",  # Can be any value for local testing
    base_url="http://127.0.0.1:12000"
)
# Use any model configured in your arch_config.yaml
message = client.messages.create(
    model="claude-3-5-sonnet-20241022",
    max_tokens=50,
    messages=[
        {
            "role": "user",
            "content": "Hello, please respond briefly!"
        }
    ]
)
print(message.content[0].text)
Streaming Responses:
import anthropic
client = anthropic.Anthropic(
    api_key="test-key",
    base_url="http://127.0.0.1:12000"
)
with client.messages.stream(
    model="claude-3-5-sonnet-20241022",
    max_tokens=50,
    messages=[
        {
            "role": "user",
            "content": "Tell me about artificial intelligence"
        }
    ]
) as stream:
    # Collect text deltas
    for text in stream.text_stream:
        print(text, end="")
    # Get final assembled message
    final_message = stream.get_final_message()
    final_text = "".join(block.text for block in final_message.content if block.type == "text")
Using with Non-Anthropic Models:
The Anthropic SDK can be used with any provider configured in Arch:
# Using OpenAI model through Anthropic SDK
message = client.messages.create(
    model="gpt-4o-mini",
    max_tokens=50,
    messages=[
        {
            "role": "user",
            "content": "Explain machine learning in simple terms"
        }
    ]
)
# Using Ollama model through Anthropic SDK
message = client.messages.create(
    model="llama3.1",
    max_tokens=50,
    messages=[
        {
            "role": "user",
            "content": "What is Python programming?"
        }
    ]
)
cURL Examples
For direct HTTP requests or integration with any programming language:
OpenAI-Compatible Endpoint:
# Basic request
curl -X POST http://127.0.0.1:12000/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer test-key" \
  -d '{
    "model": "gpt-4o-mini",
    "messages": [
      {"role": "user", "content": "Hello!"}
    ],
    "max_tokens": 50
  }'
# Using :ref:`model aliases <model_aliases>`
curl -X POST http://127.0.0.1:12000/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
    "model": "fast-model",
    "messages": [
      {"role": "user", "content": "Summarize this text..."}
    ],
    "max_tokens": 100
  }'
# Streaming request
curl -X POST http://127.0.0.1:12000/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
    "model": "gpt-4o-mini",
    "messages": [
      {"role": "user", "content": "Tell me a story"}
    ],
    "stream": true,
    "max_tokens": 200
  }'
Anthropic-Compatible Endpoint:
# Basic request
curl -X POST http://127.0.0.1:12000/v1/messages \
  -H "Content-Type: application/json" \
  -H "x-api-key: test-key" \
  -H "anthropic-version: 2023-06-01" \
  -d '{
    "model": "claude-3-5-sonnet-20241022",
    "max_tokens": 50,
    "messages": [
      {"role": "user", "content": "Hello Claude!"}
    ]
  }'
Cross-Client Compatibility
One of Arch’s key features is cross-client compatibility. You can:
Use OpenAI SDK with Claude Models:
# OpenAI client calling Claude model
from openai import OpenAI
client = OpenAI(base_url="http://127.0.0.1:12000/v1", api_key="test")
response = client.chat.completions.create(
    model="claude-3-5-sonnet-20241022",  # Claude model
    messages=[{"role": "user", "content": "Hello"}]
)
Use Anthropic SDK with OpenAI Models:
# Anthropic client calling OpenAI model
import anthropic
client = anthropic.Anthropic(base_url="http://127.0.0.1:12000", api_key="test")
response = client.messages.create(
    model="gpt-4o-mini",  # OpenAI model
    max_tokens=50,
    messages=[{"role": "user", "content": "Hello"}]
)
Mix and Match with Model Aliases:
# Same code works with different underlying models
def ask_question(client, question):
    return client.chat.completions.create(
        model="reasoning-model",  # Alias could point to any provider
        messages=[{"role": "user", "content": question}]
    )
# Works regardless of what "reasoning-model" actually points to
openai_client = OpenAI(base_url="http://127.0.0.1:12000/v1", api_key="test")
response = ask_question(openai_client, "Solve this math problem...")
Error Handling
OpenAI SDK Error Handling:
from openai import OpenAI
import openai
client = OpenAI(base_url="http://127.0.0.1:12000/v1", api_key="test")
try:
    completion = client.chat.completions.create(
        model="nonexistent-model",
        messages=[{"role": "user", "content": "Hello"}]
    )
except openai.NotFoundError as e:
    print(f"Model not found: {e}")
except openai.APIError as e:
    print(f"API error: {e}")
Anthropic SDK Error Handling:
import anthropic
client = anthropic.Anthropic(base_url="http://127.0.0.1:12000", api_key="test")
try:
    message = client.messages.create(
        model="nonexistent-model",
        max_tokens=50,
        messages=[{"role": "user", "content": "Hello"}]
    )
except anthropic.NotFoundError as e:
    print(f"Model not found: {e}")
except anthropic.APIError as e:
    print(f"API error: {e}")
Best Practices
Use Model Aliases: Instead of hardcoding provider-specific model names, use semantic aliases:
# Good - uses semantic alias
model = "fast-model"
# Less ideal - hardcoded provider model
model = "openai/gpt-4o-mini"
Environment-Based Configuration: Use different model aliases for different environments:
import os
# Development uses cheaper/faster models
model = os.getenv("MODEL_ALIAS", "dev.chat.v1")
response = client.chat.completions.create(
    model=model,
    messages=[{"role": "user", "content": "Hello"}]
)
Graceful Fallbacks: Implement fallback logic for better reliability:
def chat_with_fallback(client, messages, primary_model="smart-model", fallback_model="fast-model"):
    try:
        return client.chat.completions.create(model=primary_model, messages=messages)
    except Exception as e:
        print(f"Primary model failed, trying fallback: {e}")
        return client.chat.completions.create(model=fallback_model, messages=messages)
See Also
Supported Providers & Configuration - Configure your providers and see available models
Model Aliases - Create semantic model names
LLM Routing - Intelligent routing capabilities